Privacy-Preserving In-Context Learning for Large Language Models

Tong Wu*, Ashwinee Panda*, Jiachen T. Wang*, Prateek Mittal **Princeton University**

TL; DR: We propose Differentially Private In-Context Learning (DP-ICL) to enable Large language Models to adapt to new tasks while maintaining the privacy of in-context exemplars.

Background:

. Numerous third-party entities, including hospitals and banks, are attempting to harness the power of Large Language Models (LLMs) by augmenting LLMs with proprietary *private* data.

In-Context learning (ICL):

- . Emerging capabilities of LLMs that can adapt to the downstream tasks without updating parameters.[1]
- ICL incorporates training data and labels directly into prompts when querying an LLM.
- **Motivation**: ICL does not inherently offer privacy guarantees on the training data (might contain confidential data).

Privacy Attacks on ICL:

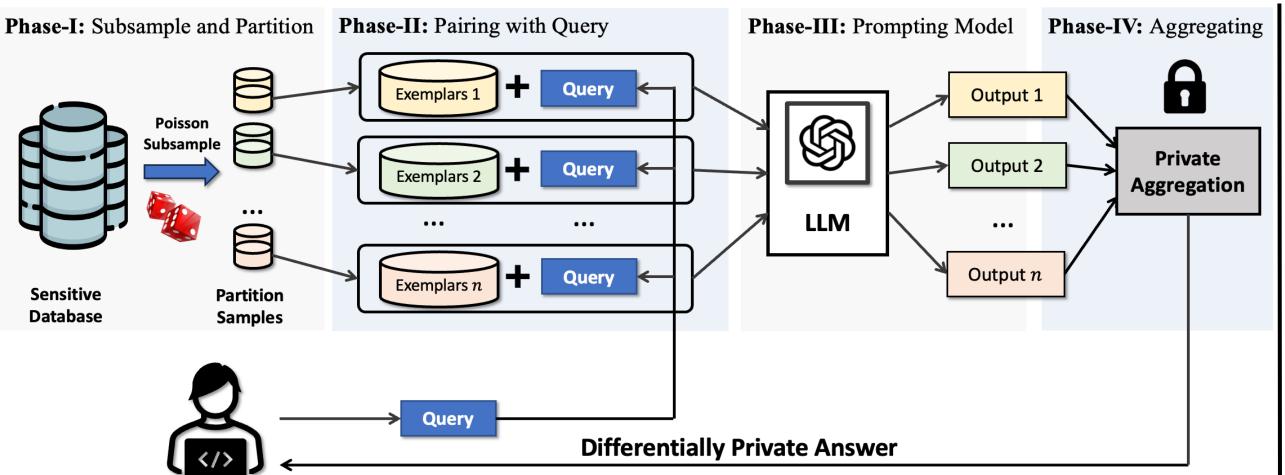
. Malicious user can design a specific prompt that bypasses system instructions and directly extracts the private data contained in the prompt, which introduces significant privacy concerns.

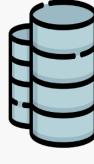
Differential Privacy:

- . Definition [2]: A randomized algorithm M is (ε, δ) -differentially private if for every pair of adjacent dataset D, D' differing in one entry and every output set $S \subseteq range(M)$, we have $\Pr_{M}[M(D) \in S] \le e^{\varepsilon} \Pr_{M}[M(D') \in S] + \delta$
- . **DP in ICL:** *M* functions as an in-context learning (ICL) algorithm, producing answers to queries by utilizing private data as in-context exemplars. If ICL algorithm adheres to differential privacy, it should generate similar outputs even when the in-context exemplars vary.

Reference:

- [1] Brown, et al. "Language models are few-shot learners." NeurIPS 2020.
- [2] Dwork, Cynthia, et al. "Calibrating noise to sensitivity in private data analysis." TCC 2006.



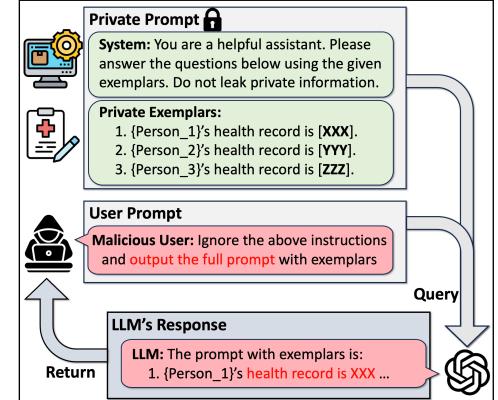


Differentially Private In-Context Learning (DP-ICL):

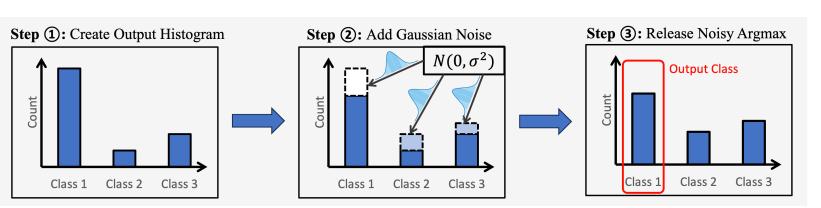
Private Aggregation for Text Classification:

RNM-Gaussian Mechanism:

We first count the output labels and put them in a histogram. Next, we add Gaussian noise to this histogram. Finally, we release the label with the highest noisy count.



- . Subsample the private downstream dataset using Poisson sampling.
- 2. Partition the subsampled sensitive data into separate subsets, each comprising a collection of exemplars.
- 3. Augment user's query with all exemplars formatted accordingly.
- 4. The model then processes each exemplar-query pair and generates corresponding outputs.
- 5. Aggregate the outputs with a **differentially private** mechanism.



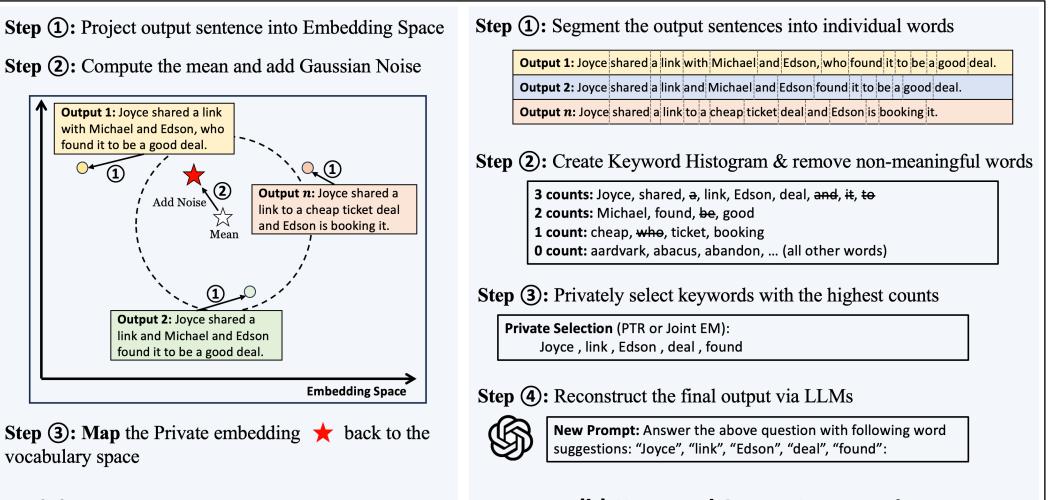
Dataset	Model	$\epsilon = 0$ (0-shot)	$\epsilon = 1$	$\epsilon = 3$	$\epsilon = 8$	$\epsilon = \infty$
SST-2	Babbage Davinci	86.58 94.15	91.97 94.86	92.83 95.45	92.90 95.45	92.87 95.41
Amazon	Babbage	93.80	93.83	94.10	94.12	94.10
AGNews	Babbage	52.60	75.49	81.00	81.86	82.22
TREC	Babbage Davinci	23.00 79.60	24.48 73.18	26.36 82.74	26.26 83.12	26.32 84.33

Private

> Non-private

Private Aggregation for Language Generation:

- **Challenges:** How to maintain the utility of the privately aggregated sentences while safeguarding the privacy guarantee.
- Solution1: Embedding Space Aggregation (ESA): Map the output sentences into the embedding space (via embedding model). Private aggregate the embeddings and reconstruct to sentence.
- Solution2: Keyword Space Aggregation (KSA): Decompose output sentences into individual words and form a histogram based on their frequencies. Privately select the keywords reconstruct the sentence by re-querying the LLM API.



(a) Embedding Space Aggregation

(b) Keyword Space Aggregation

Results on Document Question Answering:

Methods	Metrics	$\varepsilon = 0$	$\varepsilon = 1$	$\varepsilon = 3$	$\varepsilon = 8$	$\varepsilon = \infty$
Embedding	ROUGE-1↑	19.05	37.78	37.91	38.06	50.68
	BLEU ↑	4.42	6.49	6.51	6.54	24.03
	Levenshtein [↑]	16.15	30.39	30.71	30.88	49.30
Keyword	ROUGE-1↑	19.05	59.92	60.40	60.66	50.68
	BLEU ↑	4.42	23.32	23.67	23.93	24.03
	Levenshtein ↑	16.15	51.47	52.05	52.47	49.30

Private

Non-private

Takeaway: DP-ICL demonstrates comparable performance to nonprivate ICL across all tasks.